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Abstract: Silicon carbide (SiC) metal-oxide-semiconductor field effect transistors (MOSFETs) are
expected as power electronic devices for high radiative conditions, including nuclear plants and
space. Radiation response of commercial-grade prototype SiC MOSFETs with applying the gate bias
is of interest, in terms of installation of the device in robots or sensors working under such radioactive
circumstances. Due to gamma-rays irradiation, the threshold voltages (Vth) of samples with un- and
negative-biased up to −4.5 V slightly shift toward the negative voltage side. In contrast, the positive
bias of 2.25 V shifts Vth more negatively. Positive charge densities trapped in the gate oxide of un-
and positive-biased samples increased with increasing dose. However, no significant increase was
observed for negative-biased samples of −2.25 and −4.5 V. We calculated characteristic parameters for
the accumulation of holes in the gate oxide, σpJp which is defined as the product of current density
due to holes generated by irradiation and capture cross section for a hole in a trap, and it is lower for
these negative biased samples compared with the unbiased case. Application of appropriate negative
gate biases to SiC MOSFETs during irradiation suppresses accumulation of positive charges in the
gate oxide and negative shift of Vth, due to irradiation.
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1. Introduction

Owing to its wide band gap and strong covalent bond of silicon carbide (SiC), SiC metal-oxide-
semiconductor field effect transistors (MOSFETs) are known as power electronic devices with a higher
radiation tolerance. The radiation response of SiC MOSFETs is of interest in terms of the application
of this device for use in radiative conditions, including nuclear plants and space. In particular,
for the decommissioning of Tokyo Electric Power Company Holdings (TEPCO) Fukushima Dai-ichi
nuclear plants, although operations of robots or sensors under high radioactive circumstance are
required [1–3], commercial Si devices seem to be susceptible to radiation damage in such harsh
conditions [4,5]. Recently, the radiation response of commercially available or prototype SiC MOSFETs
against gamma ray irradiation was studied by several authors [6–12]. These MOSFETs have a channel
length shorter than 1 µm and width on the order of a meter to conduct large currents. Also, specific
processes are employed to improve electric properties, including nitridation of the interface between
the oxide and SiC. These characteristics of commercial or prototype SiC MOSFETs might make their
electrical properties be more sensitive to irradiation compared with ones for the basic research. So far,
the radiation response was studied in terms of device structure and fabrication process [6], irradiation
conditions, such as high temperature and humidity [7,8,10], and application of gate bias [11,12].
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In particular, applying the positive gate bias during irradiation, the threshold voltage (Vth) remarkably
shifts in the negative direction, as reported for irradiation of positively biased Si MOSFETs [13–15]. It is
explained that the radiation-induced holes move toward the Si/oxide (SiO2) interface due to the applied
electric field and are trapped by defects in the oxide near the interface [16–18]. In addition, varying the
gate bias during irradiation from positive to either negative or zero volts results in substantial recovery
of Vth [11]. These findings indicate that annihilation of holes trapped in the gate oxide takes place by
changing the polarity of the bias [19–22]. Such radiation induced charge neutralization for Si MOS
devices was also explained in terms of direct annealing of trapped holes and charge compensation
of positive charges of trapped holes by electrons [23]. Contribution of the charge compensation to
the annealing of net positive charges is less significant for non-hardened oxide, since it involves a
larger amount of oxygen vacancies as a hole trap, resulting from dry or high temperature oxidation
process [16]. In contrast to positive bias, the effect of negative gate bias on the radiation response of
commercial or prototype SiC MOSFETs is still unclear. Although it has been suggested that negative
gate bias results in the annihilation of accumulated holes [11], more detailed research is required for
practical use and to determine the condition in which annihilation takes place. In addition, a study
about the radiation response under a negative biased condition is also of interest to predict aged
electrical properties of SiC MOSFETs in a non-radiative condition. Since gamma-rays can generate a
number of additional holes/electrons in the oxide/semiconductor, irradiation serves as an accelerated
test and allows us to avoid time-consuming experiments [24]. Previous reports about Si MOSFETs
showed that long term degradation behavior under bias and temperature stress is quite similar to
that caused by irradiation. In this report, the effect of negative gate bias on the radiation response of
prototype SiC MOSFETs is studied. Dependence of annihilation and accumulation behaviors of holes
on the applied bias is revealed and the condition in which annihilation predominantly takes place
is determined.

2. Materials and Methods

The samples used in this study were vertical 4H-SiC MOSFETs mounted in “TO3P” packages,
provided by Sanken Electric Co., Ltd. (Niiza, Japan). The blocking voltage and the rated current are
1200 V and 20 A, respectively. These were prototype devices, although fabricated using commercial
processes, such as nitridation of the gate oxide. Dry oxidation followed by 10% N2O treatment was
carried out to fabricate a gate oxide of 45 nm thickness. P-wells in the channel region were formed
by ion implantation. Doping concentration of acceptor was approximately 1 × 1016

−2 × 1016 cm−3.
The samples were irradiated with gamma-rays from 60Co at a dose rate of 10 kGy (SiO2)/h up to
2 MGy at room temperature (RT) in dry N2 atmosphere. During irradiation, negative biases of −9,
−4.5, and −2.25 V were applied to the gate electrode, and source and drain electrodes were grounded.
For comparison, SiC MOSFETs were also irradiated with the gate node grounded and with a positive
bias of +2.25 V. At the intervals between each irradiation, drain current (ID)–gate voltage (VG), and
ID–drain voltage (VD), characteristics were measured at RT using a semiconductor parameter analyzer
(Agilent 4156 B).

Densities of the positive charge trapped in gate oxide and negative charge at the interface of
SiC/oxide were calculated on the slope of ID–VG curves [25]. The midgap current Img was calculated
using the equation representing ideal drain current in the subthreshold region [26]:

ID = 2
1
2 µ

(W
2L

)(qNALB

β

)(
ni

NA

)2

eβΨs(βΨs)
−

1
2 (1)

where W, L: channel width and length, q, NA, ni, Ψs: the elementary charge, acceptor concentration
in channel region, intrinsic carrier concentration at the absolute temperature (T), and band bending
at the surface of SiC, respectively. Channel size and acceptor concentration data was provided by
Sanken Electric Co., Ltd. The reciprocal thermal energy (=q/kBT, where kB is Boltzmann constant)
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is β and Debye length (=(εsic·ε0/(βqNA))1/2, where εsic, ε0 are the relative permittivity of SiC and
permittivity in vacuum, respectively) is LB. Effective mobility (µ) is calculated from linear region of
ID–VD curves. When the surface is bending, Ψs is equal to Ψb = (kBT/q) ln(NA/ni) in the above equation,
the midgap current Img was obtained. Physical parameters, including the dielectric constant εsic of 9.7,
and the intrinsic carrier concentration ni at RT of 5.44 × 10–9 cm–3 were adopted from the reference [27].
The subthreshold region of ID–VG curves was extrapolated to the calculated Img to obtain the midgap
voltage, Vmg. The extrapolation of ID–VG curves was carried out carefully to exclude the influence of
leakage current. For a sample before irradiation, the curve could be extrapolated from ID = 10−10 A,
however, for irradiated samples, the curve was extrapolated from ID = 10−7 A. Finally, threshold
voltage shift (∆Vth) of irradiated samples was separated into two terms of charge trapped in oxide
(∆Vot) and at interface (∆Vint), depicted as follows:

∆Vth = ∆Vot + ∆Vint, ∆Vot = ∆Vmg, ∆Vint = ∆Vth − ∆Vmg (2)

where ∆Vmg is the shift of Vmg due to irradiation.
The areal densities of trapped holes ∆Not and interface state ∆Nint are obtained from equations:

∆Not =
Cox

q
∆Vot, ∆Nint =

Cox

q
∆Vint (3)

where Cox is oxide capacitance. Before estimation, we measured the high frequency (1 MHz) capacitance
(C)–voltage (V) curves of MOS capacitors provided by Sanken Electric at room temperature (data are
not shown). The thickness and fabrication process of the oxide is the same as that of the gate oxide of
the MOSFETs used in this study. Calculated dielectric constant from oxide capacitance allows us to
consider the gate oxide as SiO2. Accumulation and annihilation behavior of holes in the oxide due to
irradiation is described by the following equation [22,28]:

∂pt

∂t
= σp Jp(Nt − pt) − σn Jnpt (4)

where pt is hole density trapped at the defect, Jp,n is current density due to holes and electrons,
σp,n is capture cross section for a hole in a trap and electron in trapped holes, respectively. Nt is
the hole trap density. When the oxide electric field Eox is positive, holes diffuse in the gate oxide
from the gate electrode toward SiC/oxide interface and electrons diffuse in the opposite direction.
The effect of detrapping of captured holes into SiO2 valence band [29] is also included in the second
term of Equation (4). As previously reported, the gate oxide of practical SiC MOSFETs includes
nitrogen-related defects [30] in addition to the oxygen vacancy, which is a popular positive charge
trap in Si MOSFETs [31]. Thus, we evaluate accumulation and annihilation behavior of holes using
Equation (4) in dose region below 100 kGy, in which the effect of nitrogen-related defects is not
significant [6]. The oxide electric field during irradiation is approximated by dividing the sum of
applied bias and the built-in voltage applied to the oxide at VG = 0 V, by the oxide thickness. That is
calculated by the following procedure. Using experimentally obtained ID at VG = 0 V from ID–VG

curve and Equation (1), surface potential Ψs at VG = 0 V is obtained. Assuming electrical properties of
irradiated SiC MOSFETs are predominantly determined by oxide trapped (Vot) and interface trapped
charges (Vint), VG is correlated with Ψs and flat band voltage (VFB) as follows:

VG = VFB + Vot + Vint + Ψs +
√
(2εSiCε0qNAΨs)/Cox (5)

After subtracting obtained Ψs from both side of the equation at VG = 0 V, the right-hand side of
the equation corresponds to the voltage applied to the oxide before applying the bias.
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3. Results

Figure 1a–d show ID–VG curves in the subthreshold region for unbiased, −2.25, −9, and +2.25 V
biased samples. During the measurement, 10 V of VD was applied. ID–VG curves for negatively and
unbiased samples (Figure 1a–c) negatively shift due to irradiation, however, no significant shift is
observed above 20 kGy. It should be mentioned that an increase in leakage current with increasing
dose is attributed to the leakage path generated by parasitic bias due to accumulated positive charges
in the field oxide, rather than the degradation of the interface between SiC/oxide [10]. Since this study
focuses on charge generated in the gate oxide, we do not discuss this leakage current in this study.
In contrast, ID–VG curves for +2.25 V shift more negatively at even 10 kGy irradiation.Materials 2019, 12, x FOR PEER REVIEW 4 of 9 
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Figure 1. ID–VG curves in the subthreshold region for irradiated SiC MOSFETs for (a) unbiased,
(b) −2.25 V, (c) −9 V, and (d) +2.25 V. These were measured applying a drain voltage of 10 V.

The threshold voltage shift ∆Vth is plotted as a function of dose. Vth is calculated by linear
extrapolation of the square root of ID–VG curves in the saturation region. ∆Vth is the voltage shift from
the initial Vth of each sample before irradiation. In Figure 2a, ∆Vth of unbiased and negative biased
samples slightly decreased up to 20 kGy and the +2.25 V biased sample decreased up to 50 kGy, and
further negative shift is observed over 1 MGy. Observed shift above 1 MGy was caused by an increase
of the density of hole traps in the oxide, probably as a result of cleavage of the Si–N bond [6].
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Figure 2. Plots of (a) the threshold voltage shift and (b) normalized mobility as a function of dose.

In order to investigate the effect of interface traps on electrical properties, normalized channel
mobilities are plotted as a function of dose in Figure 2b. Normalized channel mobility is defined
as a ratio of the effective mobility for irradiated samples (µeff), which was calculated from drain
current (ID)–drain voltage (VD) curves, to compare with the initial (before-irradiated) sample (µeff0).
Each normalized mobility slightly decreased with the increasing dose. It resulted from electron
scattering by increased shallow traps located at the interface between SiC/oxide [32]. However, at least
below 200 kGy, significant degradation of mobility was not observed. It suggests that most of interface
traps formed in this dose region were located far from the conduction band edge of SiC. Usually,
charges trapped at such deep traps might also behave as scattering centers of carriers in the inversion
layer. However, in the case of SiC MOSFETs, they are easily screened by the carriers, since the number
of electrons in the inversion layer increases with increasing the gate voltage [33,34]. Although we
cannot quantify contribution of the interface traps to the mobility degrade, deep traps act primarily as
negative fixed charges in dose regions as low as several hundred kGy.

4. Discussion

Figure 3 is the estimated electric field formed in the gate oxide (Eox) during irradiation. For unbiased
and negative biased cases, Eox slightly increased up to 10 kGy and no significant change was observed
with further irradiation. As shown in Figure 3, Eox for −2.25 V is approximately 0 and Eox for −4.5 V is
slightly negative. For +2.25 V, we cannot obtain values above 5 kGy since large negative shift of ID–VG

curves inhibits to calculate Ψs at VG = 0 V.
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Figure 3. Plots of electric field gradient in the oxide during irradiation (Eox) as a function of dose.

Figure 4a,b show charge densities trapped in oxide (∆Not) and at interface (∆Nint) plotted as a
function of dose. Both ∆Not and ∆Nint are plotted up to 200 kGy, since large leakage current inhibits
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extrapolation of the ID–VG curves. In the figures, an increase of ∆Not with an increasing dose resulted
from accumulation of holes in the oxide. ∆Not for negative and unbiased samples gradually increased,
while ∆Not of +2.25 V monotonically increased. Relative to ∆Not, a smaller increase of ∆Nint with
increasing dose was observed for every sample. The effect of application of the gate bias during
irradiation on the interface property is smaller than that for the oxide.
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Figure 4. Positive charges trapped in the oxide (∆Not) and at the interface (∆Nint) for (a) negative
biased, (b) un- and +2.25 V biased samples.

Accumulation and annihilation behavior of holes in the oxide were investigated by least square
fitting of obtained ∆Not curves. On the basis of ∆Not of +2.25 V biased sample below 2 kGy, the density of
hole trap in the oxide, Nt, was calculated using Equation (4). In such a low dose region, the annihilation
effect (second term of Equation (4)) could be negligible. Least square fitting of plots of ∆Not gives
Nt of 2.7 × 1012 cm2, which is somewhat smaller than the reported Nt of 4.50 and 8.50 × 1012 cm [22].
Figure 5a shows experimental plots and estimated curves of ∆Not for unbiased and negative biased
samples. We maintain the view that ∆Not estimated from experimental results essentially follow
Equation (4), although the experimental uncertainties should be improved. Estimated σpJp and σnJn

are also plotted as a function of the gate bias in Figure 5b, respectively. σnJn of negative biased
samples slightly increased for −2.25 and −4.5 V biased cases relative to unbiased case. Since σnJn is
annihilation probability of a trapped hole, this indicates that annihilation behavior was not significantly
affected by application of these negative biases, while σpJp is less than half of the unbiased one.
As the absolute value of the oxide electric field (Eox) for these negative biased samples was smaller
than the unbiased case, as shown in Figure 3, the yield of hole due to irradiation is expected to be
smaller [20]. Additionally, smaller Eox might suppress movement of generated holes toward SiC/oxide
interface, at which many hole traps exist. Thus, for −2.25 and −4.5 V biased cases, relatively lower
σpJp was obtained. Further increasing the negative bias up to −9 V, Eox becomes larger, as seen in
Figure 3. Nevertheless, remarkable increase of σpJp was not observed and the annealing effect was
not extracted from the fitting results. These suggest that most of the hole traps are located close to
the SiC/SiO2 interface [35]. Due to the suppression of movement of holes toward the interface by
negatively large Eox, a portion of holes generated by irradiation could be trapped. Low annealing
effect is also interpreted as formation of traps too far from the gate electrode. They were beyond the
reach of electrons coming from the gate electrode.
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Figure 5. (a) Experimental plots and simulated curves for −2.5, −4.5 V, and non-biased samples plotted
as a function of dose. (b) Estimated σpJp and σnJn plotted against applied gate bias during irradiation.

In this study, electrical properties of irradiated MOSFETs were characterized after each irradiation.
It takes inevitably several minutes before the measurement is carried out. Such a relatively long interval
is not recommended in terms of precise evaluation of the instability of Vth [36]. Due to the long interval,
the amount of charges with a fast detrapping time constant cannot be evaluated by our measurement
procedure [35]. In other words, obtained results in this study show the effect of charges with a slow
time constant on the radiation response of MOSFETs. Furthermore, we applied the bias of −4.5 V on
the gate electrode with other electrodes grounded in order to investigate the contribution of only bias
on the electrical properties. The bias is applied to MOSFETs without irradiation and measurement
procedure is the same as the case of irradiation experiment. Figure 6 shows the ID–VG curves of the
MOSFETs before applying bias and after 24 h aging. This aging time corresponds to the time for a
cumulative dose of 240 kGy in our irradiation condition. The ID–VG curve of the aged sample is almost
consistent with that of the pristine one, except for a slightly increased leakage current. Hence, only the
application of the gate bias does not significantly affect the electrical properties. Accumulation and
annealing of trapped charges observed in this study are attributed to a synergy effect between the gate
bias and irradiation.
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5. Conclusions

Electrical properties of prototype SiC MOSFETs irradiated at various gate biases were characterized.
Threshold voltages (Vth) for un- and negative-biased up to −4.5 V samples slightly shift toward the
negative voltage side, due to irradiation. A further increasing bias was observed negatively up to −9 V,
Vth shift more negatively. Moreover, a further negative shift of Vth was observed for the positive bias of
2.25 V. Positive charge densities trapped in the gate oxide of un- and positive-biased samples increased
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with increasing dose, while no significant increase was observed for negative- biased samples of −2.25
and −4.5 V. The characteristic parameter for accumulation of holes in the gate oxide, σpJp, was lower
for these negative biased samples compared with the unbiased case. Further increasing the negative
bias up to −9 V, σpJp is not significantly varied. This indicates that negative bias and Eox suppress the
movement of holes toward traps located close to the SiC/SiO2 interface and only a portion of holes
generated by irradiation were trapped. In contrast, there is not as large a difference in the parameter for
annihilation of holes trapped in the oxide, σnJn, among −2.25 and −4.5 V biased and unbiased samples.
For −9 V biased case, no annihilation effect was recognized. These results indicate that trapped
holes were predominantly annealed by electrons coming from the SiC side. Application of negative
gate biases to SiC MOSFETs during irradiation by which |Eox| within approximately 0.5 MV/cm was
generated, suppresses accumulation of holes in the gate oxide.
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